Главная · Гражданство РФ · Звуковая левитация. Левитация под воздействием акустического луча

Звуковая левитация. Левитация под воздействием акустического луча

Ученые изобрели акустический притягивающий луч, который способен притягивать, отталкивать и переворачивать висящие в разреженном воздухе объекты.

В недавнем научном исследовании объясняется, что действие акустического притягивающего луча основан на звуковых волнах со строго рассчитанной частотой, создающих зону пониженного давления, в которую можно захватить маленькие объекты и перемещать их, управляя движением волн.

Брюс Дринкуотер - инженер-механик Бристольского университета и соавтор исследования рассказал, что хотя последняя демонстрация и была лишь экспериментом, эту технологию можно применять для бесконтактного управления клетками в теле человека или направлении специальных акустических капсул, чтобы таким образом точечно вводить в тело медицинские препараты.

Летающие объекты

Чтобы научиться подвешивать объекты в воздухе, ученые уже перепробовали все, от лазерных лучей до сверхпроводящих магнитных полей. Но в 2014 году исследователи из шотландского Университета Данди показали, что акустические голограммы, действующие по принципу захватывающего луча, теоретически могут притягивать предметы.

“По сути, они лишь предоставили доказательство присутствия в процессе какой-то силы, но не смогли использовать ее для захвата и перемещения объектов”,- рассказал Дринкуотер.

Принцип новой технологии довольно простой: проходящие через определенную среду (например, воздух) звуковые волны c пониженным и повышенным давлением образуют силу.

“Каждый из нас испытывал на себе силу звука: когда вы находитесь на рок-концерте, вы не только слышите, но и чувствуете, как звук проходит через ваше тело и буквально шевелит ваши внутренности. Мы должны придумать, как обуздать эту силу”,- рассказал Дринкуотер порталу Live Science.

Благодаря четко рассчитанной последовательности высвобождения звуковых волн можно образовать зону пониженного давления, способную погасить силу гравитации и таким образом удерживать объект в воздухе. Если он куда-либо перемещается, зоны повышенного давления вокруг него вталкивают его обратно в зону пониженного.

Однако ученые уверяют, что с точностью вычислить необходимые формы и направления звуковых волн довольно сложно; уравнения, на которых основан процесс, нельзя решить на коленке.

Итак, Дринкуотер со своим студентом докторантуры Азиером Марзо и другими коллегами запустили компьютерную симуляцию и пропустили через нее мириады форм звуковых волн, чтобы найти именно ту комбинацию, дающую зону пониженного давления, окруженную зоной повышенного.

Они нашли три разных типа акустических силовых полей, способных вращать, захватывать и перемещать объекты. Первый тип своим действием напоминает пинцет, удерживающий частицы в разреженном воздухе. Второй захватывает их в подобие клетки из зон повышенного давления. А третий тип своим действием напоминает торнадо, со вращающимися зонами повышенного и пониженного давления, образующими что-то вроде “глаза”, в котором объект остается неподвижен. Об этом журналу Nature Communications рассказали ученые.

Чтобы достичь такого результата, команда использовала тонкий ряд из 64 мини динамиков производства компании Ultrahaptics, способных издавать звуковые волны с микроскопической точностью. В предыдущих системах акустической левитации использовалось 4 ряда динамиков; в свою очередь, новая модель способна создавать такой же эффект с использованием лишь одного ряда. Команда исследователей продемонстрировала действие своего притягивающего луча на маленьком шарике пенопласта.


Дринкуотер объяснил, что размер зоны пониженного давления зависит от длины волн: чем она больше, тем больше и сама зона. А максимальная плотность объекта, который может быть перемещен с помощью звуковых полн, зависит от интенсивности звука.

По этой причине звуковые волны действуют лишь в промежутке 140-150 децибел. Если бы человеческие уши могли расслышать этот звук, он был бы невероятно громким, но, к счастью, волны обладают частотой колебания лишь в 40 килогерц и длиной волны лишь 1 сантиметр. Это значит, что люди, в отличие от дельфинов и собак, не могут его услышать.


В данный момент команда способна поднять в воздух пенопластовый шарик диаметром в 5 миллиметров.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Парить в воздухе без видимых усилий могут не только джедаи и персонажи Александра Грина. Физики уже давно окрыляют бездушную материю с помощью ультразвука, лазеров и магнитных полей. Зачем? Во-первых, это прикольно. Во-вторых, зависшие между небом и землёй предметы иногда удобнее мирно лежащих на лабораторных столах.

Обычно, чтобы рассмотреть образец в микроскоп, его кладут на предметное стекло и накрывают покровным. Какими бы прозрачными ни были эти две стеклянные пластины, часть информации всё равно теряется. Но, когда объект исследования в буквальном смысле подвешен в воздухе, отпадает надобность в этих приспособлениях.

Кроме того, парение над поверхностью позволяет создавать трёхмерные структуры, например, растить человеческие ткани, которые по понятным причинам не могут правильно сформироваться на плоской подложке. Наконец, мощная магнитная левитация обещает подарить нам транспорт будущего. Ещё бы: ведь при наземном или водном путешествии львиная доля энергии расходуется противодействие трению о поверхность.

Самый простой и дешёвый способ воспарить над миром - акустическая левитация. Каждый, кто чувствовал кожей напор звука на рок-концерте, в принципе, знаком с механизмом её действия. Правда, учёные используют не могучие басы хэви-металла, а неслышный и безвредный для человека ультразвук. На образец снизу накатываются звуковые волны, подобранные таким образом, чтобы их давление компенсировало силу тяжести. Вот и всё, образец застывает в воздухе.

Как и любое инженерное решение, всё очень просто звучит на словах и весьма нетривиально на деле. Чтобы ультразвук действительно приподнял предмет и оставил его висеть неподвижно, а не запустил куда-нибудь в стену или потолок, применяется сложное оборудование, изготовленное на заказ, работающее под высоким напряжением и требующее тщательной настройки.

Солидная лаборатория, конечно, может себе такое позволить, но о том, чтобы любознательный школьник мог изготовить собственный левитатор "на коленке", и речи быть не могло. До самого недавнего времени.

Инженеры из Университета Бристоля во главе с доктором Асьером Марсо (Asier Marzo) недавно представили устройство для левитации, которое можно собрать в домашних условиях.

Оно состоит из парковочных датчиков, электродвигателя, микроконтроллера и части, распечатанной на 3D-принтере (куда же без неё?). Пошаговую инструкцию по сборке можно найти на сайте . С помощью этого девайса можно поднимать в воздух капли жидкости, насекомых и другие мелкие объекты.

Авторы разработки надеются, что их аппарат, простой в изготовлении и использовании, позволит применять акустическую левитацию в любой, самой скромной лаборатории, даже школьной или студенческой. И потом любоваться этим занимательным явлением у себя дома за чаем, например.

Звук распространяется в любой среде, кроме вакуума. Звуковые волны окружают человека, однако часто он просто не задумывается об их присутствии. Звуки можно слышать, но они не осязаемы. Громкие звуки отрицательно воздействуют на человека, создают шум. Неслышные звуки могут создавать ощущения, однако не воспринимаются сознанием человека.

Звук высокой плотности может стать осязаемым как некоторый предмет. Однако, законы распространения звуковых волн не дают представление о звуке как движущей силе. Что ощущается предметно: сам звук или вибрации окружающих объектов?

Мысль о том, что такое нематериальное может поднимать предметы, может казаться невероятной, но это реальное явление. Акустическая левитация использует свойство звука вызывать колебания в твердом веществе, жидкости и тяжелых газах. Возможность производства антигравитационной силы с помощью звуковых волн была известна в древности.

Акустическая левитация удерживает капли воды.

Исследование явления акустической левитации основано на знаниях о силе тяжести, воздухе и волновых свойствах звука.

Гравитация заставляет объекты притягиваться друг у другу. Закон Ньютона представляет простейший способ объяснить природу гравитации. Этот закон гласит, что каждая частица во Вселенной притягивает все другие частицы. Сила притяжения увеличивается с массой объекта. Расстояние между объектами также влияет на силу притяжения. На уровне планет все объекты около поверхности земли падают на землю. Гравитация имеет свои параметры, которые мало изменяются во Вселенной.

В воздухе также могут создаваться потоки, как в жидкостях. Как жидкости, воздух также состоит из микрочастиц, которые движутся относительно земли и относительно друг друга. Воздух также может перетекать, как вода, но так как частицы воздуха не обладают высокой плотностью, они могут двигаться быстрее.

Звук - это вибрации , которые происходят в газе, жидкости, твердой среде. Звуковые волны распространяются от источника, который движется или меняет форму очень быстро с малой амплитудой. Например, удар колокола заставляет вибрировать колокол в воздухе. Колокол движется в одну сторону и толкает молекулы воздуха, заставляя их вытеснять и толкать другие молекулы, создавая область высокого давления. В области высокого давления образуется сжатый воздух. Когда колокол движется обратно, он тянет молекулы воздуха, создавая область низкого давления. В области низкого давления образуется разреженный воздух. Колокол повторяет вибрирующие движения, создавая повторяющиеся серии сжатия и разрежения. Амплитуда колебаний колокола определяет длину волны производимого звука.

Звуковые волны распространяются за счет движения молекул воздуха. Молекулы, расположенные вблизи поверхности колокола, расталкивают окружающие молекулы во всех направлениях. Звук распространяется в окружающей воздушной среде. Если нет молекул, звук не может распространяться. Вот почему в вакууме звук не распространяется. Следующая анимация изображает процесс образования звука.


Колокол толкает молекулы воздуха. Молекулы толкают другие молекулы.
Звуковые волны создаются последовательным сжатием и разрежением воздуха.

Способ звуковой левитации основан на использовании звуковых волн для уравновешивания силы тяжести. На Земле это может привести к эффекту всплытия объектов и плавания над поверхностью Земли. В космосе это способ балансировки и стабилизации объектов в невесомости.

Физика звуковой левитации.

Устройство акустической левитации состоит из двух основных частей:
преобразователя - вибрирующей поверхности, которая производит звуковые волны;
отражателя - пластины, от которой отражается звуковая волна.

Преобразователь и отражатель могут иметь вогнутые поверхности, чтобы фокусировать звук. Чтобы удерживать каплю воды, звуковая волна несколько раз проходит путь от источника к отражателю и обратно. Устройство настраивается определенным образом: отношение длины зазора между преобразователем и отражателем к длине волны равно целому числу. То есть в расстояние между преобразователем и отражателем укладывается натуральное число волн .


Стоячая звуковая волна

Число волн, укладывающихся в промежуток
между преобразователем и отражателем, равно натуральному числу.

Звуковая волна, как и все звуки является продольной волной давления. В продольной волне движение каждой точки параллельно направлению распространения волны.

Волна может отражаться от поверхностей. Отсюда следует закон отражения, в котором говорится, что угол падения - угол между осью падающей волны и нормалью к поверхности - равен углу отражения - углу между осью отраженной волны и нормалью к поверхности. То есть звуковая волна отражается от поверхности под тем же углом, под которым падает на поверхность. Звуковые волны, падающие под углом 90 градусов будут отражаться обратно под тем же углом.

Когда звуковая волна отражается от поверхности, взаимодействие между ее сгущениями и разрежениями создает помехи. Сжатия звуковой волны встречают сжатия отраженной волны. Чтобы волна стояла на месте и не перемещалась, длина волны должна укладываться целое число раз в промежутке между преобразователем и отражателем. Таким образом, создаются замкнутые области густого воздуха и области разреженного воздуха. Используя стоячие звуковые волны можно подвесить в воздухе каплю воды.

Стоячие звуковые волны имеют узлы - области минимального давления - и пучности - области максимального давления. Чтобы капля воды левитировала, необходимо разместить ее в узле звуковой волны. Капля будет лежать между двумя пучностями.



Области низкого и высокого давления

Стоячая звуковая волна образует
области сжатого и разреженного воздуха

Отражатель устанавливается по отношению к преобразователю таким образом, чтобы в расстояние между ними укладывалось целое число длин волн, и области низкого и высокого давления были параллельны оси гравитации. В этом случае звуковая волна создает постоянное давление на каплю воды снизу и уравновешивает силу тяжести.



Капля воды расположена в узле

Акустическая левитация создает области
высокого давления, которые удерживают капли воды

В космосе действует слабая гравитация. Плавающие частицы собираются в узлах звуковых волн и не разлетаются. В условиях земной гравитации частицы располагаются над пучностями, которые препятствуют падению частиц на землю.

Акустическая левитация может применяться в различных сферах: для управления взвешенными в воздухе частицами, поднятия тяжести, стабилизации и координации, позиционирования деталей, устройств на производстве, управления жидкими веществами.

Принцип действия акустической левитации заключается в производстве звуковых волн в закрытой области. За счет сжатия и разрежения воздуха звуковыми волнами образуются области низкого и высокого давления - узлы и пучности стоячей звуковой волны. В узлах действует сила гравитации: частицы воздуха и взвешенные микрочастицы стремятся к центру узла. В пучностях действует сила антигравитации: частицы воздуха и взвешенные частицы стремятся покинуть пучность.

Похожие опыты могут проводиться в магнитном и электрическом поле для преодоления силы тяжести и уравновешивания объектов в левитирующем состоянии.

Британские ученые тм физики из Университета в Бристоле разработали акустический левитатор, способный при помощи одного ультразвукового луча поднимать в воздух и удерживать объекты больше длины волны. Авторы заявили об успешном эксперименте месяц назад на страницах Physical Review Letters. Подробные данные об исследовании также опубликованы

Как сообщают физики, им удалось осуществить эксперимент, благодаря созданию акустического вихря, который заставил взлететь и удерживаться над поверхностью излучателя шар диаметром полтора сантиметра. Если вы не в курсе, то раньше длина волны была принципиальным, фундаментальным ограничением для однолучевых акустических левитаторов. Ещё раньше проблемой было само создание левитатора, использующего один луч. Для получения эффекта применяли два источника ультразвука. Тема показалась мне интересной и значимой. Под катом подробнее об акустической левитации объектов и исследовании британцев.

Несколько слов об акустической левитации

Вики определяет акустическую левитацию, как
“устойчивое положение весомого объекта в стоячей акустической волне.”

Это явление известно с 1934 года, когда его теоретически доказал Л.Кингом, позже в 1961 г. выводы о возможности явления сделаны Л.П.Горьковым.

Суть принципа, на котором работают акустические левитаторы, заключается в создании интерференции когерентных звуковых волн, которая приводит к возникновению локальных областей повышения давления. Благодаря этому тело может удерживаться в той или иной области пространства, а также перемещаться.

Ученые, которые занимаются темой акустической левитации, верят в большое будущее этого явления. Футуристические проекты предполагают подъем и перемещение различных объектов, оснащение левитаторами системы управления складами, применение в портах и на производствах. Однако до такой массы и размеров левитаторам пока очень далеко. Одна из областей, где такие устройства смогут проявить себя в ближайшее время - это фармакологические технологии, где для повышения степени очистки веществ существует необходимость в акустической левитации.

Лирическое отступление
В детстве, в далёких 90-х, мне доводилось играть в космическую цивилизационную стратегию Ascendancy. В ней планеты можно было оснащать т.н. tractor beam (захватным лучом), который был способен притягивать объекты из космоса. Удивился, когда дожил до момента изобретения похожего, пусть и миниатюрного, устройства.

Как размер перестал иметь значение

Ранние однолучевые акустические левитаторы разрабатывались различными учеными, в т.ч. Азьера Марцо (Asier Marzo) из Бристоля и бразильцем Марко Аурелио Бриццотти Андраде из университета Сан-Паулу. Они смогли добиться левитации объектов диаметром не более 4 миллиметра. Максимальный размер предметов, которые поднимал в воздух такой левитатор, должен был быть меньше длины стоячей волны.

На этот раз бристольские ученые смогли преодолеть это принципиальное ограничение, используя специальный алгоритм управления излучателями,. Благодаря системе управления излучением, полусферической форме и точному расчету мощности источников ультразвукового излучения получилось создать акустические вихри, способные удержать крупный предмет. Новый сферический левитатор объединяет 192 ультразвуковых излучателя с частотой 40 кГц (длина волны при н.у. составляет 0,87 см). Излучатели смонтированы на внутренней поверхности сферы диаметром 192 мм.

Благодаря алгоритму управления ультразвуковыми сигналами создаются несколько вихрей с одинаковой спиральностью и различными направлениями. В зоне их действия возникают локальные области высокого давления, удерживающие объект. Максимальный диаметр шара, который поднял в воздух бристольский аппарат - 1,6 см, что практически в 2 раза больше, чем длина волны, которую создает прибор. Также устройство способно изменять скорость вращения шарика, за счет изменения направления ультразвуковых вихрей.

Неожиданные двухмерные эффекты

Эксперименты ученых продемонстрировали, что при фиксации одной из координат (например, когда предмет находится на поверхности), левитатор новой конструкции способен захватывать и вращать объекты, превышающие длину волны в 5-6 раз. Этот эффект открывает новые возможности для применения устройств с акустическими вихрями. Предполагается их использование для создания центрифуг и лабораторных систем управления микро и макро частицами.

Итог

Успехи бристольской команды (Asier Marzo, Mihai Caleap и Bruce W. Drinkwater) показывают, что, вероятно, в ближайшем будущем акустические левитаторы будут применяться для создания лабораторного, а позже и промышленного оборудования.

Возможно, в обозримом будущем акустическая левитация сможет заменить магнитную, которая сегодня активно применяется для создания оригинального дизайна различных устройств, в том числе акустических систем и проигрывателей винила. Не исключено, что когда-нибудь человечество увидит и мощный акустический tractor beam (как в Ascendancy), способный фиксировать и перемещать действительно крупные объекты.

Научный сотрудник Бристольского университета Асьер Марцо занимается исследованиями в области ультразвука и электромагнетизма и выкладывает в открытый доступ интересные проекты для 3D-печатников – силовые лучи и устройства для акустической левитации!

Недавно мы рассказывали об интересном проекте за авторством команды латвийских исследователей из компании Neurotechnology, разрабатывающих , основанную на позиционировании с помощью ультразвуковых преобразователей. Проекты Асьера основаны на том же принципе – управлении объектами и даже удержании оных во взвешенном состоянии с помощью направленных звуковых волн.

Последний проект представляет собой именно устройство для акустической левитации мелких объектов – бусинок, капель жидкостей или даже не ожидающих такого поворота муравьев. Направленное звуковое поле генерируется ультразвуковыми преобразователями, установленными в нижней и верхней части аппарата. Преобразователи создают давление на объект, а фокусировка поля достигается за счет изгиба и регулировки выходной мощности верхнего и нижнего верхнего и нижнего массивов.

Для управления преобразователями понадобятся микроконтроллер Arduino Nano и драйвер L298N. Самих преобразователей в оригинальном дизайне сразу 72 штуки – автор рекомендует MSO-P1040H07T производства Manorshi или FBULS1007P-T от Ningbo.

Несущая конструкция аппарата предельно проста и может быть напечатана на 3D-принтере одной деталью по 3D-модели, предоставленной автором. Главное – не перепутать полярность при установке динамиков. Как вариант, можно собрать более мощную версию на 16-миллиметровых преобразователях, способную работать с более плотными и тяжелыми объектами, но несколько менее эффективную при левитации жидкостей. Полный перечень компонентов и подробные инструкции по сборке можно найти по этой ссылке , а процесс изготовления наглядно показан в ролике: Но, пожалуй, еще более интересен другой проект Асьера – этакое подобие силового луча. По сути своей, то уполовиненная, ручная версия того же левитатора. Принцип действия аналогичен, но на создание этого аппарата понадобится вдвое меньше преобразователей, плюс все тот же микроконтроллер и двойной драйвер.

Общая стоимость компонентов для акустического силового луча оценивается примерно в $75. Подробные инструкции можно найти по этой ссылке , а демонстрация работы и процесс сборки представлены в видео:А у вас есть интересные новости? Поделитесь с нами своими разработками, и мы расскажем о них всему миру!.